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Use of a recurrence formula in computing the lattice Green 
function 
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Japan 

Received 16 October 1974 

Abstract. It is shown that the lattice Green function at an arbitrary lattice site of the FCC 
lattice can be calculated from the three values at the lattice sites (O,O, 0), (2,0,0) and (2, 2.0) 
with the aid of the recurrence formula presented by Inoue. The argument is extended to 
the BCC and sc lattices. For these lattices also, only three values are required in the cor- 
responding calculation. 

1. Introduction 

The lattice Green function is a basic function in the study of solid state physics. It 
appears especially when impure solids are studied (see for example the introduction of 
the paper by Morita and Horiguchi 1972). Much effort has been focused on the value 
of that function at the origin, although we need also the values at various lattice sites in 
many problems. For the square lattice the author (Morita 1971) presented a recurrence 
formula which relates the values of the lattice Green function at three successive lattice 
sites on the diagonal. With the aid of that formula we can calculate the lattice Green 
function at an arbitrary lattice site, from the knowledge of the function at the origin 
(0,O) and the site (1, 1). 

Inoue (1974) applied the technique for deriving that recurrence formula to the FCC 
lattice, and obtained a recurrence formula which relates the values of the lattice Green 
function at 13 lattice sites within a coordinate plane. She argued that the lattice Green 
function at an arbitrary lattice site on this lattice can be calculated with the aid of the 
formula, if the values on an axis, (2p, 0,O) (p = 0, 1,2, .  . .), and the one for the lattice 
site (2,2,0) are known. In the present paper we show that the knowledge of only three 
values at (0, 0, 0), (2,0,0) and (2,2, 0) is required in order to calculate the value of the 
lattice Green function at an arbitrary site of the FCC lattice if we use the recurrence 
formula derived by her and the difference equation defining the lattice Green function. 
That argument is given in the form which is applicable to the face-centred (FC) tetragonal 
lattice in 9 2. The discussion is extended to the BCC lattice in 9 3 and to the simple 
tetragonal and sc lattices in 9 4. The results of these sections are summarized in 9 5. In 
the appendix we derive the recurrence formula for the rectangular lattice with the nearest 
and next nearest neighbour interaction and show how that formula is used to give the 
recurrence formulae for the tetragonal and cubic lattices. 
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2. The FCC lattice 

The lattice Green function G(t;  I ,  m, n) for the FCC lattice is defined by the difference 
equation : 

y[G(l+l, m+ 1, n)+G(I+ 1, m -  1, n)+ G(1- 1, m+ 1, n)+ G(I- 1, m- 1, n)]  

+ G(I+ 1, m, n+ I ) +  G(I+ 1, m, n -  I )+  G(I- 1, m, n+ 1)+ G(I- 1, m, n -  1) 

+G(I, m+ 1, n+ l)+G(I,  m+ 1, n-  1)+G(I, m -  1, n+ l)+G(I,  m-  1, n-  1) 

= 4tG(l, m, n) - 4S,,S,,6,, 

where t is a complex number, which is described in terms of energy in solid state physics, 
and (I, m, n) is such a set of integers that the sum I +m+n is an even number. y is the 
parameter which is unity for the isotropic FCC lattice. If y # 1 the lattice may be called 
the face-centred (FC) tetragonal lattice. The argument t showing the t dependence of the 
function G(t ;  I ,  m, n) is often suppressed for brevity throughout the present paper. The 
solution of (2.1) is given by 

' cos lx cos my cos nz 
t - 4.q y ,  z )  

G ( t ;  I ,  m, n)  = - 
i 3  Ion dx J: dy S, dz (2.2a) 

where 

w(x, y, z )  = i' cos x cos y +cos y cos z + cos z cos x. (2.2b) 

The difference equation (2.1) connects the function G(1, m, n )  for three different values of 
each I ,  m and n. 

The recurrence relation derived by Inoue (1974) is expressed for the FC tetragonal 
lattice as follows : 

(m+l ) [G( l+2 ,m+2,0 ) -2~ ,G( I ,m+2 ,O)+G( l -2 ,m+2,0 ) ]  

-4(2m+ I)E,[G(l+ 1, m + 1, 0)+ G(1- 1, m+ 1, O)] 

-2m[~~,G(I+2,m,O)-2E,G(I,m,O)+~,G(1-2.m, O)] 

-4(2m-1)E1[G(l+1,m-1,O)+G(I-1,m-1,0)]  

+ (m  - 1) [G(l+ 2, m - 2, 0)  - 2y,G(I, m - 2, 0) + G( 1 - 2, m - 2, O)]  = 0 (2.3) 
where 

E ,  E ( y t +  l),$jz, E, 1 +4(tZ - l)/;". 7 2  E (2Pj')- 1 ; (2.4) 

see the appendix for a derivation. For the isotropic FCC lattice, ;'z = 1. This relation 
(2.3) holds for all pairs of even integers 1 and m or of odd integers 1 and m. Inoue's 
derivation applies except when m = 0. We see that (2.3) is valid also when m = 0 
because of the symmetry property 

G(I, -m, 0) = G(- l ,m ,  0) = G(I,m, 0). ( 2 . 5 ~ )  

We shall exchange the numbers I and m in (2.3) and then use the symmetry property 

(2 .5h)  

that 

G(m, I ,  0) = G(1, m, 0). 
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As a result we have 

(1+ l)[G(I+ 2, m+2 ,0 ) -  2y2G(I+2, m, 0)+ G(I+ 2, m -  2,O)l 

-4(21+1)E, [G(I+l ,m+l ,O)+G(I+1,m-1 ,0) ]  

- 2I[y,G(I, m+2,0)-  2E2G(I, m, O)+y2G(I, m-2,O)l 

-4(21-1)El[G(I-1,m+1,0)+G(I- 1,m-1,0)] 

+(1- l)[G(I- 2, m +2,0)-  2y2G(I- 2, m, 0) + G(1- 2, m-  2, O)] = 0. (2.6) 

We show that all the lattice Green functions G(2p+ 1,2q+ 1,O) for 2p+ 1 2 5 and 
0 ,< 2q + 1 6 2p + 1 are evaluated from the knowledge of G(1, m, 0) for 0 d 1 d 2p and 
0 d m d 4 ;  G(2p+2,2q,0) for 2 p + 2  2 6 and 0 < 2q d 2 p + 2  if y # 1, and also 
G(4,2q, 0) for 0 < 2q < 4 if y = y 2  = 1, are evaluated from the knowledge of G(1, m, 0) 
for 0 d I d 2p+1 and 0 d m d 3. 

We first put I = 2p 2 2 and m = 0 in (2.6) and write it as follows : 

Here we collected G(1, m, 0) with 1 = 2p + 2 on the left-hand side, and the right-hand side 
L ,  involves only G(I, m, 0) with 2p-2 d 1 < 2p+ 1. In a similar fashion (2.6) and (2.3) 
for 1 = 2 p  2 4 and m = 2 are expressed as 

G(2p + 2,4,0)  - 2y2G(2p + 2,2,0)  + G(2p + 2,0,0)  = L,  (2.8) 

and 

3G(2~+2,4 ,0) -4y2G(2p+2,2 ,0)+G(2p+2,0 ,0)  = L, ,  (2.9) 

where L ,  and L ,  are linear combinations of G(I, m, 0) with 2p- 2 ,< 1 d 2p+ 1 and 
0 d m d 4. We consider the set of three equations (2.7H2.9) for 2p+2 2 6. If y2 # 1 
one can solve this set, obtaining three quantities G(2p + 2,4,0),  G(2p + 2,2,0)  and 
G(2p + 2,0,O)for 2p + 2 2 6, when G(1, m, 0) are known for 0 d 1 d 2p + 1 and 0 d m d 4. 

For the important case of the isotropic FCC lattice when y = y 2  = 1, we note that 
the left-hand sides of these equations (2.7)-(2.9) are not independent. The requirement 
that they must be consistent with each other gives a relation between the quantities on 
the right-hand sides: 2 L ,  +3L2-  L ,  = 0. Its explicit expression is given by 

(~-1)G(2p+1,3,0)+(7p+1)G(2p+1,  1,O) = L,, (2.10a) 

L,  E (1/4E1){3G(2p,4,0)+4[(p- l)E,-p]G(2p,2,0)+(4pE2-4p+ 1)G(2p,0,0) 

-4E,[(p-4)G(2p- 1, 3, 0)+(7p-4)G(2p-19 1, O)] 

- 3G(2p- 2 ,4 ,0)  + 4G(2p-2,2,0) - G(2p - 2,0,0)) (2.10b) 
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We now write (2.6) and (2.3) for 1 = 2p-1 2 3 and m = 1. They are 

G(2p + 1,3,0) -(2yz - 1)G(2p + 1,1,0) = L,, (2.1 la)  

L ,  E ( 1 / ~ ) { 2 ( 4 ~ -  ~ ) E , [ G ( ~ P ,  2, O)+G(~P ,  0,O)l 

+ (2~-1 ) [y ,G(2~-1 ,  3,0)-(2E2-yz)G(2~-1, 

+2(4p-3)E1[G(2p-2,2,0)+G(2p-2,0, O)] 

- ( ~ - 1 ) [ G ( 2 ~ - 3 , 3 , 0 ) - ( 2 y 2 - 1 ) G ( 2 ~ - 3 ,  1,O)l (2.11b) 

and 

G(2p+ l93,O)-yzG(2p+ 1, 190) = L,, ( 2 . 1 2 ~ )  

L.5 E 2El[3G(2p,2,0)+G(2p,0,0)]+2y2G(2p-1, 3,0)-2E,G(2~-1, 1,O) 

+ 2E 1 [ 3G( 2p - 2,2,0)  + G( 2p - 2,0, O)] - G( 2p - 3,3,0) + 3’ 2 G( 2p - 3, 1.0) 

(2.12b) 

respectively. If y 2  # 1, one can solve the set of (2.1 1) and (2.12), obtaining G(2p + 1,3,0)  
andG(2p+l , l ,O)for2p+l  2 5,whenG(l,m,O)areknownforO < 1 < 2pand0 < m < 3. 

However, when y = y2 = 1 the left-hand sides of these equations are not independent 
of each other. For that case we already have (2.10) which is independent of these two. 
We can then determine both G(2p+ 1,3,0) and G(2p+ 1, 1,O) for 2p+ 1 2 5 by solving 
eithertheset of(2.10)and(2.11)orthesetof(2.10)and(2.12),whenG(l,m, 0)forO < 1 < 2p 
and 0 < m < 4 are known. 

When y = y 2  = 1 consistency of equations (2.11) and (2.12) requires the relation 
L ,  - L6 = 0 for 2p + 1 2 5. If we replace p by p + 1 in that equation we have 

(2.13a) 

(2.13b) 

for 2 p + 2  2 4. We note that the left-hand side of this equation is independent of that 
of (2.7) and that the right-hand sides of (2.7) and (2.13) involve only G(l,m,O) for 
2p-2 < 1 < 2p+ 1 and 0 < m < 3 if 2 p + 2  2 4. Hence we can solve the set of linear 
equations (2.7) and (2.13) for the unknowns G(2p + 2,2,0)  and G(2p + 2,0,0), if 2p + 2 2 4 
and G(1, m, 0) for 0 < 1 < 2p+ 1 and 0 < m < 3 are known. 

After G(2p + 2,2,0)  and G(2p + 2,0,0) for 2p + 2 2 4 are obtained, G(2p + 2,2q, 0) 
for 0 < 2q < 2p + 2 can be calculated with the aid either of (2.3) or of (2.6), if we already 
know G(l, m, 0) for 0 < m < 1 < 2p+ 1. Note here that when we use (2.6) the knowledge 
of G(2p +2,2,0)  is not required in this calculation. In particular, if we put 2p = 2 in 
(2.7) we have an expression for G(4,2,0) in terms of G(I,m,O) for 0 < m < 1 < 3 and 
G(4,0,0). Inasimilarway,whenG(2p+ 1, 1,O)for2p+1 2 3isknown,G(2p+1,29+1,0) 
for 0 < 2q+ 1 < 2p+ 1 are calculated with the aid of (2.3) or (2.6). For instance, if we 
put l = m = 1 in (2.3) we have an expression for G(3, 3,O) in terms of G(I, m, 0) for 
0 < m < 1 < 2 and G(3, 1,O). We can now calculate G(1, m, 0) for all 1 and m with the 
aid of two sets of equations and (2.3) or (2.6), when we initially know G(l, m, 0) for 
0 < m 6 1 < 2 and G(3,1,0) if y = 1, and when we know further G(4,0,0) if y # 1. 
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For the isotropic FCC lattice where y = 1 we show that G(1, 1,O) and G(3,1,0) are 
calculated from G(0, 0, 0), G(2,0,0) and G(2,2,0). By putting y = 1 and ( I ,  m, n) = (0, 0,O) 
in the difference equation (2.1) defining the lattice Green function, we have 

G(1, 1,O) = &tG(O, 0,O)- 1). (2.14) 

If we write the equation (2.1) for y = 1 and (1, m, n) = (2 ,0 ,0)  and (1, 1,O) and then 
eliminate G(2, 1, 1) from the two equations, we have 

G(3, 1,O) = $G(2,2 ,0)+( t+))G(2 ,0 ,0) - ( f t2 -$)G(0 ,0 ,  O)+$. (2.15) 

For the isotropic FCC lattice we can now calculate the lattice Green function G(I, m, 0) 
for all 1 and m by starting from the values of G(0, 0, 0), G(2,0,0) and G(2,2,0). The 
expressions of these in terms of the complete elliptic integrals of the first and second 
kind have been provided by Iwata (1969) and Inoue (1974). A numerical procedure of 
computing these functions was discussed by Morita and Horiguchi (1971, 1973). 

After G(1, m, n) for  n = 0 are calculated, we can use (2.1) in order t o  calculate the values 
for  nonzero n. 

3. The BCC lattice 

The lattice Green function G ( t ;  I ,  m, n) for the BCC lattice is given by ( 2 . 2 ~ )  with 

w(x, y ,  z )  = cos x cos y cos 2,  (3.1) 

where I ,  m and n are either all even or  all odd integers. The recurrence relation cor- 
responding to (2.3), for this lattice, is given by 

( m +  1)[G(1+2, m+2,0)+2G(I,m+2,0)+G(1-2,m+2,0)] 

+2m[G(1+2,m,O)-2E,G(I,m,O)+G(1-2,m,O)] 

+(m-  l ) [G( l+2 ,m-2 ,0 )+2G( l ,m-2 ,0 )+G(1-2 ,m-2 ,0 ) ]  = 0 (3.2) 

where 1 and m are both even numbers and 

E ,  4 t 2 - 1 ;  

see the appendix for a derivation of (3.2). Exchanging 1 and m and using a symmetry 
property, we have 

( I +  1)[G(I+ 2, m + 2,O) + 2G(1+ 2, m, 0) + G(l+ 2, m - 2, O)] 

+21[G(I, m+2 ,  0)-2E2G(I,m, O)+G(I, m-2,0)] 

+ ( I -  1) [G(I- 2, m + 2,O) + 2G(I- 2, m, 0) + G(1- 2, m - 2,013 = 0. (3.3) 

We put 1 = 2p 2 2 and m = 0 in (3.3) and obtain 

G(2p+2,2 ,0)+G(2p+2,0 ,0)  = M , ,  

M I  (2p + 1)- { - 4p[G(2p, 2,O) -E2G(2p, 0, O)] 
-(2p- l)[G(2p-2,2,0)+G(2p-2,0,0)]}. 

( 3 . 4 ~ )  

(3.4b) 
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We write (3.2) and (3.3) for 1 = 2p 2 4 and m = 2:  

The left-hand sides of (3.4H3.6) are not independent of each other. Their consistency 
requires the relation 2M, +M2-3M, = 0 for 2p 2 4. By writing this equation and 
replacing p by p + 1 we have 

3G(2p + 2,4,0) + 4(p + 1 + pE2)G(2p + 2,2,0)  

- [ 4 ( p + l ) E 2 + 4 ~ + 3 ] G ( 2 ~ + 2 , 0 , 0 )  = M , ,  

M ,  - 3G(2p, 4,O) - 4G(2p, 2,O) - G(2p, 0,O) 

( 3 . 7 ~ )  

(3.7b) 

for 2p + 2 2 4. The left-hand side of this equation is independent of those of (3.4H3.6). 
Hence we can determine G(2p + 2,4,0), G(2p + 2,2,0)  and G(2p + 2,0,0)  for 2p + 2 2 6 
by solving the set of(3.7) and two of (3.4H3.6). The solution for 2p+2 2 6 is obtained 
when G(1, m, 0) are known for 2p - 2 < 1 < 2p and 0 < m < 4. 

Here we put 2p = 2 in (3.4), (3.5) and (3.7). If G(l,m,O) for 0 < m < 1 < 2 are 
known this set of linear equations can be solved for the unknowns G(4,0,0), G(4,2,0) and 

We can now calculate G(1, m, 0) for all 1 and m with the aid of (3.2) or (3.3),  and of the 
set of (3.7) and two of (3.4)-(3.6), if the values of G(O,O, 0), G(2,0,0) and G(2,2,0) are 
known. The expression of these functions in terms of the complete elliptic integrals of 
the first and second kind has been provided (Joyce 1971). The numerical calculation 
of these complete elliptic integrals was discussed by Morita and Horiguchi (1971, 1973). 

The values of G(1, m, n )  for nonzero n are calculated from those for n = 0, with the 
aid of the difference equation defining the lattice Green function. 

G(4,4,0). 

4. The sc lattice 

In the sc lattice each lattice site corresponds to a set of three integral numbers ( I ,  m. n) ,  
and vice versa, in the ordinary way of introducing the coordinate axes. If we write the 
coordinate plane for n = 0, we have figure l (a) .  We note that we can also take the axes 
along the diagonal directions of the plane as in figure l(b). In the case of the square lattice 
on this plane the recurrence formula along the 1' axis was found simpler than the one 
along the I axis ; the former relates the values of lattice Green function at  three lattice 
sites (Morita 1971) but the latter relates those at five lattice sites (see the appendix). 
We shall now use the set of ( I ' ,  m', n )  in specifying the lattice site, where I' and m' are both 
even or both odd integers and n is an arbitrary integer. The lattice Green function is 
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m l  
0 

(0 1 (6) 

Figure 1. Two natural ways of introducing the coordinate axes in the square lattice. (a) The 
ordinary way. (b) An alternative way (reproduced from Morita 1971). 

then given by 

cos l’x’ cos m’y’ cos nz 
(4.la) 

t - w’(x‘ ,  y ’ ,  z) 

w‘(x’, y ’ ,  z) = 2 cos x’ cos y’ + y cos z. (4.lb) 

In the ordinary definition the lattice Green function G(t ; I ,  m, n) is given by ( 2 . 2 ~ )  

(4.2) 

Here y is the parameter which is unity for the isotropic sc lattice. When y # 1 the 
lattice is called the simple tetragonal lattice. The Green functions G’(t ; l’, m’, n) and 
G(t ; I ,  m, n) are related by 

with 

w(x, y ,  z )  = cos x +cos y + y  cos z. 

G‘(t ; I’, m’, n) = G(t ; (I’ + m‘)/2, (I’ - m‘)/2, n), 

G‘( t ; l+m, l -m,n)  = G(t ; l ,m,n) .  
(4.3) 

By the procedure described in the appendix we obtain the following recurrence 
formula for G’(l’, m‘, n) : 

(m‘+ l)[G‘(l‘+2,m’+2,0)+2G’(I’,m’+2,O)+G(l‘-2,m’+2, O)] 

- 2(2m’ + l)t[ G(l‘ + 1, m’ + 1,O) + G’(l‘ - 1, m‘ + 1, O)] 

+ 2m’[G‘(l‘ + 2, m’. 0) + 2E,G’(I‘, m’, 0)+ G’(l’- 2, m’, O)] 

- 2(2m’ - l)t[G’(l’ + 1. m’ - 1 , O )  + G’(l‘ - 1, m’- 1, O)] 

+(m’- I ) [G’( l ’+2,mf-2.  0)+2G’(I’,m’-2, O)+G’(l‘-2.mi-2. O)] = 0 

(4.4) 
where 

E ,  = t Z  + 1-71. 

By exchanging I’ and m‘ and using the symmetry property 

G’(m’, l’, 0) = G‘(/’, m‘, 0), 

(4.5) 
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we have 

( I ) +  1)[G’(I’+2,mf+2,0)+2G’(I’+2,m’, O)+G’(I’+2, m‘-2,0)1 

- 2(2r + l)t[G’(I’ + 1, m’ + 1 , O )  + G’( I’ + 1, m’ - 1, O)] 

+2l’[G‘(I‘, m’+ 2,0)+2E,G‘(l‘, m‘, 0)+ GI(/’, “-2, O)] 

- 2(2r - l)t[G’(I’ - 1, m’ + 1,O) + G’( I‘ - 1, m’ - 1, O)] 

+ ( I ’ -  l)[G‘(I’- 2, m‘+ 2,0)+ 2G’(I’- 2, m’, 0)+ G‘(I’- 2, m’- 2, O)] = 0. 

(4.6) 
We first write (4.4) and (4.6) for I’ = 2p- 1 2 3 and m‘ = 1. They are 

G’(2p + 1, 3,O) + G’(2p + 1, 1,O) 

= 3tG‘(2p,2,O)+tG’(2p,0,0)-2G’(2p-l, 3,0)-2E,G’(2~-1, 150) 

+ 3 t G ‘ ( 2 p - 2 , 2 , 0 ) + t G ’ ( Z p - 2 , 0 ,  O ) - G ‘ ( 2 p - 3 , 3 , O ) - G ’ ( 2 ~ - 3 ,  190) (4.7) 

and 

G’(2~+1,3,0)+3G‘(2p+l ,  1,O) 

= ( 1 / ~ ) { ( 4 ~ -  1)t[G’(2p3 2,O) + G’(~P ,  0,O)l 

- (2p - 1) [G’( 2p - 1,3,0) + (2E2 + 1 )G’(2p - 1, 1, O)] 

+ (4p - 3)t[G’(2p - 2,2,0) + G’(2p - 2,0, O)] 

- ( p  - 1) [G’(2p - 3, 3,O) + 3G’(2p - 3, 1, O)]). (4.8) 
From these we can calculate both G(2p+ 1,3,0) and G(2p+ 1,1,0)  for 2p+ 1 2 5 ,  from 
the knowledge of G’(I’, m’, 0) for 0 < I’ < 2p and 0 < m’ < 3. 

We put I’ = 2p 2 2 and m‘ = 0 in (4.6) and obtain 

G’(2p + 2,2,0) + G’(2p + 2,0,0) = N ,, (4.9a) 

N ,  E (2p+ 1)-’{2(4p+ l)tG’(2p+ 1, 1,0)-4p[G‘(2p, 2,O)+E,G’(2p9 0, O)] 

+2(4p- l)tG’(2p- 1, 1,0)-(2p- 1)[G’(2~-2,2,0) 

+ G’(2p - 2,0, O)]}. (4.9b) 

We write (4.4) and (4.6) for I’ = 2p 2 4 and m‘ = 2 :  

3G‘(2p+2,4,0)+4G’(2p+2,2,0)+G’(2p+2,0,0) = N , ,  (4.10~1) 
N ,  z 2t[5G’(2p+ 1, 3, 0)+3Gf(2p+ 1, 1, 0)]-6Gr(2p, 4, 0)-8E2G‘(2p, 2,O) 

- 2G’(2p, 0,0)+2t[5G‘(2p- 1 ,3 ,0 )+  3G‘(2p- 1, 1, O)] 

- 3 G ‘ ( 2 ~ - 2 , 4 , 0 ) - 4 G ‘ ( 2 ~ - 2 ,  2,0)-Gf(2p-2,0,0) (4.1 Ob) 
and 

G’(2p + 2,4,0) + 2G’(2p + 2,2,0) + G’(2p + 2,0,0) = N ,  , (4.1 l a )  

N ,  (2p + 1)- ‘{2(4p + l)t[G’(2p + 1,3,0) + G’(2p + 1, 1, O)] - 4p[G’(2p, 4,O) 

+ 2E2G’(2p, 2,O) + G’(2p, 0, O)] + 2(4p - l)t[G’(2p - 1, 3,O) + G’(2p - 1, 1, O)] 

- (2p - 1) [G(2p - 2,4,0) + 2G’(2p- 2,2,0) + G’(2p- 2,0,0)]} . (4.1 1 b) 
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The left-hand sides of (4.9H4.11) are not independent of each other. Their consistency 
requires the relation 2N , + N, - 3N, = 0 for 2p 2 4. By writing this equation explicitly 
and eliminating G‘(2p + 1, 3,O) and G’(2p+ 1, 1,O) with the aid of (4.7) and (4 .Q  we have 
a formula of the form : 

3G’(2p, 4,0)-4[(p- l)y2 - 1]G’(2p, 2, O)+(4p>12 + 1)G’(2p, 0,O) = N,. 

If we replace p by p + 1 in this equation we have 

3G’(2p + 2,4,0)  - 4(py2  - 1)G’(2p + 2, 2,O) + [ 4 ( p  + l)r2 + lIG’(2p + 2,0,0) = Nk, (4 .12~)  

Nk E - 2[p- 3 +(2p+ 3)t- 2t2]G‘(2p + 1,3,0) + 2[p + 3 -4(p+l)E, +t]G’(2p + 1, 1,O) 

- 3G’(2p, 4,O) - 4[ 1 + ( p  + l)t2]G‘(2p, 2,O) - (1 - 4pt2)G’(2p, 0,O) 

+2(p+l)tG1(2p-1, 3,0)-2(p-l)tG’(Zp-l, 1,O) (4.12b) 

for 2p + 2 2 4. We note that the left-hand side of (4.12) is independent of those of (4.9)- 
(4.1 1). W e  can now determine G’(2p + 2,4,0), G’(2p + 2,2,0) and G’(2p + 2,0,0) for 
2 p + 2  2 6bysoloingthesetof(4.12)andtwoof(4.9~4.1l),ifG’(I’, m‘, 0)forO < I’ < 2p+ 1 
and 0 < m’ < 4 are known. 

Here we consider (4.9). (4.10) and (4.12) for 2p = 2. If G’(l’, m’, 0) for 0 < m‘ < I‘ < 3 
are known, this set of linear equations is solved for the unknowns G‘(4,4,0), G‘(4,2,0) and 
G’(4,0,0). G’(3,3,0) is calculated by (4.7) for 2p = 2, if G’(3, 1,O) and G’(l’, m‘, 0) for 
0 < m‘ < I‘ < 2 are known. The rest are 

G’(0, 0,O) = G(0, 0, 0), G’(1, 1,O) = G(l,O, 0), 

G’(2,0,0) = G(1, 1,0), G‘(2,2,0) = G(2,0,0) and G’(3, 1,O) = G(2, 1,O). 

We may use G’(3,3,0) = G(3,0,0) in place of G’(3, 1,O) = G(2, 1,0), because we can 
calculate each from the other of the pair by the above-mentioned equation for G’(3,3,0). 
For the isotropic sc lattice we note that this equation is equivalent to some of the 
relations which were given by Horiguchi (1971b) in order to express the lattice Green 
functions G(1, m, n) for l + m + n  < 5 in terms of G‘(I’, 0,O) for 0 < I‘ < 5.  

For the isotropic sc lattice G( 1,0,0) and G( 1, 1 , O )  are expressed in terms of the others, 
and hence we need the values G(0, 0, 0), G(2,0,0) and G(3,0,0). G(0, 0,O) have been 
expressed in terms of the complete elliptic integrals of the first and second kind (Joyce 
1973). It is hoped that such an expression will be found also for G(2, 0,O) and G(3,0,0) 
in the near future. 

G(I, m, n) for nonzero n are calculated from those for n = 0 with the aid of the differ- 
ence equation defining the lattice Green function (see for example Morita 1971). 

5. Summary and remarks 

The results of the preceding g 2 - 4  are summarized in table 1. The second row lists 
the functions which are required in obtaining the lattice Green function at an arbitrary 
lattice site. The third row gives the set S ,  of equations which are used in calculating 
G(2p+ 1,1,0) and G(2p+ 1,3,0)  for 2p + 1 > 5 ,  when G(f ,  m, 0) for 0 < 1 < 2p and 
0 < m < 3 or 4 are known. The fourth row gives the set S,  which is used in obtaining 
G(2p + 2,2q, 0) for 2p + 2 2 4 or 6 and 0 < q < 1 or 2, when G(1, m, 0) for 0 < I < 2p + 1 
and 0 < m < 3 or 4 are known. The last row lists the equation E which gives G(1, m + 2,O) 
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Table 1. List of the necessary lattice Green functions and the equations to be used in 
obtaining the lattice Green function at an arbitrary site (1. m. 0) on a coordinate plane from 
them. For the sc lattice the same equations are used as for the simple tetragonal lattice. 

~ _ _ _ _ _ ~  

SI (2.11) (2.12) (2.10) (2.11) 
or 
(2.10) ( 2  12) 

(4.7) (4.8) 

s2 (2.7) (2.8)(2.9) (2.7) (2.13) (3.7) and (4.12) and two 
two from from (4.9). (4.10) 
(3.4). (3.5) and (4.1 1) 
and (3.6) 

E (2.3) or (2.6) (2.3) or (2.6) (3.2) or (4.4) or (4.6) 
(3.3) 

for 1 2 3 and 1 2 m + 2  2 2 when G(1, m', 0) for 0 < m' < m and G(l', m', 0) for 
0 < m' < I' < I -  1 are known. 

In all the cases, after the values G(1, m, 0) on a coordinate plane are determined, the 
values G(1, m, n) for nonzero n are calculated with the aid of the difference equation 
defining the lattice Green function. 

In the present paper we considered the tetragonal and cubic lattices with the nearest 
neighbour interaction. We note that the generalization of the discussion to the simple 
tetragonal and the sc lattice with an interaction up to third neighbours is straight- 
forward. 
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Appendix. Derivation of the recurrence formulae 

In this appendix we first derive the recurrence formula along an axis for the rectangular 
lattice with the nearest and next nearest neighbour interaction, and then give a sketch 
of how it is used in deriving the recurrence formulae (2.3), (3.2) and (4.4) for the tetragonal 
and cubic lattices. 

The lattice Green function for the rectangular lattice with the nearest and next 
nearest neighbour interaction is given by 

cosmycosnz 
G z ( r ; m , n ; a , , a z , 2 / 3 )  

l--w2(Y, 4 ' 

o, (y ,  z) = a 1  cos y + a2 cos z + 28 cos y cos z. ('4.2) 
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When n = 0, 

where 

D = [ ( t -a1  ~ o s y ) ~ - ( ( t l ~ f 2 P c o s y ) ~ ] ~ ' ~ .  

We consider the integral 

1 "  1 
7c J0 D 

dy D cos my = - dy-D2 cos my. 

Substituting (A.4) for D2 in the numerator of the expression on the right-hand side, we 
have 

1 "  1 G I o  D 
dy-cos m y [ ( t 2 - a ~ ) - 2 ( a , t + 2 a , ~ ) c o s  y+(a:-4fi2)cos2 y] 

= ( t 2  - ai)G,(m,  0)- ( a , t  + 2a,P)[G2(m + 1 , O )  + G2(m - 1, O)] 
+ $a: - 4p2) [G2(m + 2 , O )  + 2G2(m, 0) + G,(m - 2,011, ('4.6) 

where the parameters t ,  a , ,  u2 and 28 are suppressed for brevity. On the other hand, 
by a partial integration of the expression on the left-hand side of (A.5), we have 

1 "  a,(t-a, cosy)+2/3(a2+2Qcosy) 
sin y D -G Jo dy sin my 

1 
2m 

= - ( a l t + 2 a 2 P ) [ G 2 ( m +  1,0)-G2(m- 1,011 

1 
4m 

--(a; - 4P2) [G2(m + 2,O) - G2(m - 2,  O)]. 64.7) 

By equating (A.6) and (A.7) we have 

(a; - 4BZ) [(m + 1)G,(m + 2,O) + (m - 1 )G2(m - 2, O)] 

- 2(a, t + 2a#) [(2m + 1)G2(m + 1,O) + (2m - 1)G2(m - 1, O)] 

+ 2m(2tz - 2ai +a: - 4b2)G2(m, 0) = 0. (A.8) 

This recurrence formula for G,(t ; m, 0 ;  a , ,  a 2 ,  28) was derived by Morita and Horiguchi 
(unpublished, see Horiguchi 1971a). 

The lattice Green function G(t ; I ,  m, n )  defined by (2 .2~)  with (2.2b) for the face- 
centred tetragonal and the FCC lattice is expressed in terms of G 2 ( t ;  m, n ;  a l ,  a 2 ,  2s) 
as follows : 

i rn 

G(t;  I ,  m, n)  = LJ  dx cos Ix G 2 ( t ;  m, n ;  y cos x, cos x, 1). 64.9) 
n o  

We substitute a l  = y cos x, a2 = cos x and 28 = 1 into (A.8) and then multiply both 
sides of (A.8) by (cos Ix)/n. The integral with respect to x of the expression obtained 
gives, with the aid of the relation (A.9), the recurrence formula (2.3) in the text. 
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For the BCC lattice we express the lattice Green function (2.24 with (3.1) as follows : 

dx cos lx G,(t ; m, n ; 0, 0, cos x). (A.lO) 

We now put aLI = a2 = 0 and 28 = cos x in (A.8), multiply by (cos x)/n and then 
integrate with respect to x. With the aid of (A.lO) we then obtain (3.2). 

The lattice Green function defined by (4.1) for the simple tetragonal and sc lattice 
is written as 

1 r" 
G'(t ; I ' ,  m', n) = J dx' cos I'x'G,(t ; m', n ;  2 cos x', y, 0). 

n o  
(A. 11) 

We put r l  = 2cosx ' , r ,  = y and 2/3 = 0 in (AA), multiply by (cosx)/n and then 
integrate with respect to x. We then obtain (4.4). 
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